Convenient Synthesis of Disubstituted Cyclic Ethers.

Syntheses of (-)-cis-Rose Oxide and
(cis-6-Methyltetrahydropyran-2-yl)acetic Acid

Koichi HOMMA and Teruaki MUKAIYAMA

Department of Applied Chemistry, Faculty of Science,
Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162

Disubstituted cyclic ethers are stereoselectively prepared on the successive treatment of  $\delta$ - or  $\epsilon$ -lactones with t-butyldimethylsiloxy-1-ethoxyethene and silyl nucleophiles in the presence of a catalytic amount of trityl hexachloroantimonate or a catalyst system of antimony pentachloride, chlorotrimethylsilane and tin(II) iodide. The present procedure is effectively applied to short syntheses of (-)-cis-rose oxide and (cis-6-methyltetrahydropyran-2-yl)acetic acid, a constituent of civet.

In the previous paper,  $^{1)}$  we have reported that 2-ethoxycarbonylmethyl substituted cyclic ethers are prepared from lactones on treatment with t-butyl-dimethylsiloxy-1-ethoxyethene and silyl nucleophiles (triethylsilane, allyl-trimethylsilane, trimethylsilyl cyanide etc.) by promotion of trityl salts such as  $TrSbCl_{6}$ ,  $TrSbF_{6}$ ,  $TrClO_{4}$  or by the catalyst system of  $SbCl_{5}$ ,  $Me_{3}SiCl$  and  $SnI_{2}$ .

Now, we would like to demonstrate the scope of the above reaction and the stereoselective syntheses of (-)-cis-rose oxide ( $\underline{1}$ ) and (cis-6-methyltetra-hydropyran-2-yl)acetic acid ( $\underline{2}$ ), the glandular secretion of the civet cat (*Viverra civetta*).  $\underline{2}$ )

First, we examined the reaction of various methyl substituted lactones in order to investigate the effect of substituent on the stereocontrol (Table 1). $^{3}$ )

Tetrahydropyrans and oxepanes were prepared stereoselectively on the successive treatment of  $\delta$ -valerolactones and  $\epsilon$ -caprolactones with t-butyl-dimetylsiloxy-1-ethoxyethene and silyl nucleophiles, respectively, in the presence of a catalytic amount of TrSbCl $_6$  or a catalyst system of SbCl $_5$ , Me $_3$ SiCl and SnI $_2$ .

In the case of  $\delta$ -lactones, silyl nucleophiles mainly attack the oxonium intermediate  $(\underline{6a-d})$ , a major conformer initially formed from the lactone and t-butyldimethylsiloxy-1-ethoxyethene, from the  $\alpha$ -side due to tortional strain (Fig. 1.). The stereoselectivity is especially high in the case of 3- and 5-methylvalerolactones  $(\underline{3d,f})$  (entries 5, 7, and 8), because silyl nucleophiles attack from the  $\alpha$ -side of the initially formed oxonium intermediate  $(\underline{7b,d})$ , a minor conformer, as well due to 1,3-diaxial interaction. On the other hand, in the case of 2- and 4-methylvalerolactones  $(\underline{3c,e})$  (entries 3, 4, and 6), the nucleophile attack takes place mainly from the  $\alpha$ -side of the intermediate  $(\underline{6a,c})$ , however, the decrease in the selectivity may be depend on the  $\beta$ -side attack of

$$(CH_2)_n + OSiMe_2Bu-t + R_3SiNu +$$

Table 1. Substituent Effect of Lactones

| Entry | <u>3</u>                                        | R <sub>3</sub> SiNu       | Yield / % (<br>Method A <sup>b)</sup> | cis/trans) <sup>a)</sup><br>Method B <sup>c)</sup> |
|-------|-------------------------------------------------|---------------------------|---------------------------------------|----------------------------------------------------|
| 1     | ( <u>3a</u> )                                   | Et <sub>3</sub> SiH       | 71 (36:64)                            | 56 (31:69) <sup>d)</sup>                           |
| 2     | $\sqrt{3b}$                                     | Et <sub>3</sub> SiH       | 59 (53:47)                            | 39 (48:52) <sup>d)</sup>                           |
| 3     | ( <u>3c</u> )                                   | Et <sub>3</sub> SiH       | 84 (12:88)                            | 83 (10:90) <sup>e)</sup>                           |
| 4     | <u>3c</u><br>I                                  | ${\tt Me_3SiCH_2CH=CH_2}$ | 40 (17:83) <sup>f)</sup>              | 45 (26:74) <sup>d</sup> ,g                         |
| 5     | (3d)                                            | Et <sub>3</sub> SiH       | 82 (>99:1)                            | 89 (>99:1) <sup>e)</sup>                           |
| 6     | ( <u>3e</u> )                                   | Et <sub>3</sub> SiH       | 87 (7:93)                             | 82 (4:96) <sup>e)</sup>                            |
| 7     | $\bigcap_{0} \left( \underline{3f} \right)$     | Et <sub>3</sub> SiH       | 82 (>99:1)                            | 79 (>99:1) <sup>e)</sup>                           |
| 8     | $\frac{3f}{2}$                                  | ${\tt Me_3SiCH_2CH=CH_2}$ | 86 (>99:1)                            | 76 (>99:1) <sup>d)</sup>                           |
| 9     | ( <u>3g</u> )                                   | Et <sub>3</sub> SiH       | 91 (>99:1)                            | 86 (>99:1) <sup>d)</sup>                           |
| 10    | $\int_{0}^{\infty} \left(\underline{3h}\right)$ | Et <sub>3</sub> SiH       | 85 (>99:1)                            | 81 (>99:1) <sup>d)</sup>                           |

a) The selectivity was determined by 400-MHz  $^1$ H NMR. b) TrSbCl $_6$  (10 mol%) was used as a catalyst. c) SbCl $_5$  combined with Me $_3$ SiCl (10 mol%) and SnI $_2$  (10 mol%) was used as a catalyst. d) 10 mol% of SbCl $_5$  was used. e) 5 mol% of SbCl $_5$  was used. f) 2-Ethoxycarbonylmethyl-2-hydroxy-3-metyltetrahydropyran ( $\underline{5}$ ) was obtained in 32% yield as by-product. g)  $\underline{5}$  was obtained in 35% yield as by-product.

nucleophiles to the intermediate  $(\underline{7a,c})$ . When 2-methylvalerolactone was employed, it was expected that cis isomer should be mainly obtained because conformer  $(\underline{7a})$  preferred to conformer  $(\underline{6a})$  due to allylic strain. Surprisingly, however, the trans isomer was preferentially obtained probably due to a small allylic strain associated with conformer  $(\underline{6a})$ .

Fig. 1.

As for  $\varepsilon$ -lactones, it is supposed that the  $\beta$ -side of the oxonium intermediate  $(\underline{8a,b})$  is blocked by the axial hydrogens  $H_a$  and  $H_b$ , located at the 4-and 6-position, respectively, like the endo side of norbonylene (Fig. 2.). Actually, the silyl nucleophile attacks from the  $\alpha$ -side to give cis isomers from 2- and 6-methylcaprolactones  $(\underline{3g,h})$  (entries 9 and 10). We previously described that in the case of  $\gamma$ -butyrolactone, the elimination of t-butyldimethylsilanol from silylated cyclic hemiketal took place readily to give 2-ethoxycarbonylmethylidenetetrahydrofuran. Accordingly, we suppose that the silyl nucleophile attacks the intermediate,  $\alpha$ ,  $\beta$ -unsaturated esters ( $\underline{9}$  and  $\underline{10}$ ) derived respectively from 2- and 4-methylbutyrolactones ( $\underline{3a,b}$ ) (Fig. 3.). In the former case (entry 1), the trans isomer was obtained in preference to the cis isomer due to the 1,3-diaxial interaction because  $H_b$  is closer to  $C^1$  than  $H_a$  in  $\underline{9}$ . In the latter case (entry 2), the nucleophile would attack from both sides because there is little difference in the distances  $C^1$ - $H_a$  and  $C^1$ - $H_b$  in  $\underline{10}$ .

Next, (-)-cis-rose oxide  $(\underline{1})$  and (cis-6-methyltetrahydropyran-2-yl)acetic acid (2) were stereoselectively synthesized by utilizing the present reaction.

(R)-3-Methylvalerolactone ( $\underline{11}$ ), prepared according to the method of R. Rossi, A. Carpita and M. Chini, reacted with t-butyldimethylsiloxy-1-ethoxyethene and triethylsilane in the presence of a catalyst system of SbCl<sub>5</sub>, Me<sub>3</sub>SiCl and SnI<sub>2</sub> to afford (2S,4R)-2-ethoxycarbonylmethyl-4-methyltetrahydropyran (cis/trans=>99:1) ( $\underline{12}$ ) in 84% yield. The Grignard reaction of the ester ( $\underline{12}$ ) with methylmagnesium bromide afforded the tertiary alcohol (cis/trans=>99:1) ( $\underline{13}$ ) in 91% yield, which in turn underwent acid-catalyzed dehydration (dl-10-camphorsulfonic acid /toluene, reflux) to afford (-)-cis-rose oxide (cis/trans=93:7) ( $\underline{1}$ ), [a] $_D^{20}$ -68.3° (c 3.0, CHCl<sub>3</sub>) (lit.<sup>8</sup>) [a] $_D$ -58.1°), in 44% yield, along with (2S,4R)-4-methyl-2-(2-methyl-2-propenyl)-tetrahydropyran (cis/trans=>99:1) ( $\underline{14}$ ), [a] $_D^{20}$ -7.9° (c 3.0, CHCl<sub>3</sub>), in 25% yield (Scheme 2.).

896 Chemistry Letters, 1989

OSiMe<sub>2</sub>Bu-t + Et<sub>3</sub>SiH 
$$\frac{\text{SbCl}_5\text{-Me}_3\text{SiCl-SnI}_2}{84\%}$$

MeMgBr
OH  $\frac{10\text{-Camphorsulfonic acid}}{\text{Toluene}}$ 

Scheme 2.  $\frac{1}{44\%}$ 
 $\frac{14}{25\%}$ 

(cis-2-Ethoxycarbonylmethyl-6-methyltetrahydropyran ( $\underline{4f}$ ) was prepared in 82% yield by the reaction of 5-methylvalerolactone ( $\underline{3f}$ ) with t-butyldimethylsiloxy-1-ethoxyethene and triethylsilane in the presence of a catalytic amount of TrSbCl<sub>6</sub>. The tetrahydropyran ( $\underline{4f}$ ) was hydrolyzed under acidic condition to give (cis-6-methyltetrahydropyran-2-yl)acetic acid ( $\underline{2}$ ),  $\underline{9}$ ) mp 51-53 °C (lit. $\underline{2}$ ) 52-53 °C), in 94% yield (Scheme 3.).

Scheme 3.

## References

- 1) T. Mukaiyama, K. Homma, and H. Takenoshita, Chem. Lett., 1988, 1725.
- 2) B. Maurer, A. Grieder, and W. Thommen, Helv. Chim. Acta, 62, 44 (1979).
- 3) Except for  $\underline{4g}$ , the stereochemistry was determined by the NOE analysis (400-MHz NMR spectrum) and/or by the spin-spin coupling constants for the ring protons. The stereochemistry of  $\underline{4g}$  was determined by X-ray analysis for  $\alpha$ -naphthyl urethane of cis-2-(2-hydroxyethyl)-3-methyloxepane, derived from  $\underline{4g}$  via reduction with lithium aluminum hydride.
- This stereoselectivity is opposite to that of the reduction of 2-hydroxy-3-methyl-2-phenyltetrahydropyran with Et<sub>3</sub>SiH in the presence of trifluoroacetic acid; G. A. Kraus, M. T. Molina, and J. A. Walling, J. Org. Chem., 52, 1273 (1987).
- 5) We assume that the most stable conformation of oxonium intermediate  $(\underline{8a,b})$  resembles that of cycloheptene. Molecular mechanics calculations for cycloheptene indicate the following steric energy order:



- 6) We assume that the most stable conformations of  $\underline{9}$  and  $\underline{10}$  resemble those of methyl substituted 2-methylidenetetrahydrofurans indicated by molecular mechanics calculations.
- 7) R. Rossi, A. Carpita, and M. Chini, Tetrahedron, 41, 627 (1985).
- 8) T. Ogawa, N. Takasaka, and M. Matsui, Carbohydrate Research, <u>60</u>, C4 (1978).
- 9) No stereoisomer was detected by either  $^{1}$ H or  $^{13}$ C NMR.

( Received March 9, 1989 )